Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Infect Dis ; 111: 47-54, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-2113756

ABSTRACT

OBJECTIVES: To evaluate changes in the characteristics of patients with coronavirus disease 2019 (COVID-19) after the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) P.1 (Gamma), by comparing the clinical, demographic, and laboratory profiles of patients hospitalized during the first (May to July 2020) and second (December 2020 to February 2021) pandemic waves. METHODS: Data were collected from the records of COVID-19 patients (n = 4164) admitted to a single hospital in Salvador, Northeast Brazil. SARS-CoV-2 genome sequencing was performed on nasopharyngeal swab samples from 12 patients aged <60 years admitted to the intensive care unit (ICU) in February 2021. RESULTS: Between June 2020 and February 2021, the median age of patients admitted to the ICU decreased from 66 to 58 years (P < 0.05). This was accompanied by an increased proportion of patients without comorbidities (15.32% vs 32.20%, P < 0.0001). A significant reduction in the cycle threshold values of SARS-CoV-2 RT-PCR tests was observed in the second wave (P < 0.0001). Sequencing analysis detected lineage Gamma in all 12 ICU patients sampled in February 2021. CONCLUSIONS: The results of this study demonstrated an increased proportion of younger adults without comorbidities with severe disease during the second COVID-19 wave, shortly after the confirmation of local Gamma circulation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/virology , Hospitals , Humans , Intensive Care Units , Middle Aged
2.
Front Med (Lausanne) ; 8: 767291, 2021.
Article in English | MEDLINE | ID: covidwho-1555301

ABSTRACT

Background: The patients with coronavirus disease 2019 (COVID-19) associated with severe acute respiratory distress syndrome (ARDS) may require prolonged mechanical ventilation which often results in lung fibrosis, thus worsening the prognosis and increasing fatality rates. A mesenchymal stromal cell (MSC) therapy may decrease lung inflammation and accelerate recovery in COVID-19. In this context, some studies have reported the effects of MSC therapy for patients not requiring invasive ventilation or during the first hours of tracheal intubation. However, this is the first case report presenting the reduction of not only lung inflammation but also lung fibrosis in a critically ill long-term mechanically ventilated patient with COVID-19. Case Presentation: This is a case report of a 30-year-old male patient with COVID-19 under invasive mechanical ventilation for 14 days in the intensive care unit (ICU), who presented progressive clinical deterioration associated with lung fibrosis. The symptoms onset was 35 days before MSC therapy. The patient was treated with allogenic human umbilical-cord derived MSCs [5 × 107 (2 doses 2 days interval)]. No serious adverse events were observed during and after MSC administration. After MSC therapy, PaO2/FiO2 ratio increased, the need for vasoactive drugs reduced, chest CT scan imaging, which initially showed signs of bilateral and peripheral ground-glass, as well as consolidation and fibrosis, improved, and the systemic mediators associated with inflammation decreased. Modulation of the different cell populations in peripheral blood was also observed, such as a reduction in inflammatory monocytes and an increase in the frequency of patrolling monocytes, CD4+ lymphocytes, and type 2 classical dendritic cells (cDC2). The patient was discharged 13 days after the cell therapy. Conclusions: Mesenchymal stromal cell therapy may be a promising option in critically ill patients with COVID-19 presenting both severe lung inflammation and fibrosis. Further clinical trials could better assess the efficacy of MSC therapy in critically ill patients with COVID-19 with lung fibrosis associated with long-term mechanical ventilation.

3.
Int J Infect Dis ; 108: 252-255, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1351687

ABSTRACT

We report 3 cases of severe COVID-19 due to the SARS-CoV-2 P.1 lineage in a familial cluster detected in Salvador, Bahia-Brazil. All cases were linked to travel by family members from the state of Amazonas to Bahia in late December 2020. This report indicates the cryptic transmission of the SARS-CoV-2 P.1 lineage across Brazil and highlights the importance of genomic surveillance to track the emergence of new SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , Humans , Travel
4.
J Int Med Res ; 49(5): 3000605211015555, 2021 May.
Article in English | MEDLINE | ID: covidwho-1228969

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which began as an outbreak in Wuhan, China and has spread rapidly across the globe. Although most infections are mild, patients with severe and critical COVID-19 infections face deterioration of respiratory function and may also have extrapulmonary manifestations, mostly affecting the kidney, digestive tract, heart, and nervous system. Here, we prospectively evaluated the presence of SARS-CoV-2 genetic material using reverse-transcription polymerase chain reaction in urine samples obtained from patients with COVID-19 receiving critical care. Among 51 included patients, we found higher serum creatinine levels, a longer hospital stay, and more frequent need for dialysis in urine-positive patients. These findings could suggest that, in predisposed patients, a direct viral cytopathic effect may contribute to a more severe disease phenotype.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/genetics , China/epidemiology , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Severity of Illness Index
5.
Expert Rev Med Devices ; 17(11): 1211-1220, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1003456

ABSTRACT

Background: The current SARS-CoV-2 pandemic has provoked the collapse of some health systems due to insufficient intensive care unit capacity. The use of continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) therapies has been limited in consideration of the risk of occupational infection in health-care professionals. Aims: In preclinical experimental simulations, evaluate occupational and environmental safety of the newly developed isolation system for aerosol-transmitted infections (ISATI). Method: Simulations were conducted to test ISATI's capability to isolate aerosolized molecular (caffeine), and biological (SARS-CoV-2 synthetic RNA) markers. Caffeine deposition was analyzed on nitrocellulose sensor discs by proton nuclear magnetic resonance spectroscopy. Synthetic SARS-CoV-2 detection was performed by reverse transcription-polymerase chain reaction. Results: ISATI demonstrated efficacy in isolating molecular and biological markers within the enclosed environment in simulated conditions of CPAP, HFNO and mechanical ventilation therapy. Neither the molecular marker nor substantial amounts of synthetic SARS-CoV-2 RNA were detected in the surrounding environment, outside ISATI, indicating appropriate occupational safety for health-care professionals. Conclusion: Aerosolized markers were successfully contained within ISATI in all experimental simulations, offering occupational and environmental protection against the dissemination of aerosolized microparticles under CPAP or HFNO therapy conditions, which are indicated for patients with acute respiratory infections.


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Aerosols , Continuous Positive Airway Pressure/instrumentation , Continuous Positive Airway Pressure/methods , Health Personnel , Humans , Noninvasive Ventilation/instrumentation , Noninvasive Ventilation/methods , Oxygen , Oxygen Inhalation Therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL